Adaptive False Discovery Rate Control for Heterogeneous Data
نویسندگان
چکیده
Efforts to develop more efficient multiple hypothesis testing procedures for false discovery rate (FDR) control have focused on incorporating an estimate of the proportion of true null hypotheses (such procedures are called adaptive) or exploiting heterogeneity across tests via some optimal weighting scheme. This paper combines these approaches using a weighted adaptive multiple decision function (WAMDF) framework. Optimal weights for a flexible random effects model are derived and a WAMDF that controls the FDR for arbitrary weighting schemes when test statistics are independent under the null hypotheses is given. Asymptotic and numerical assessment reveals that, under weak dependence, the proposed WAMDFs provide more efficient FDR control even if optimal weights are misspecified. The robustness and flexibility of the proposed methodology facilitates the development of more efficient, yet practical, FDR procedures for heterogeneous data. To illustrate, two different weighted adaptive FDR methods for heterogeneous sample sizes are developed and applied to real data.
منابع مشابه
The False Discovery Rate in Simultaneous Fisher and Adjusted Permutation Hypothesis Testing on Microarray Data
Background and Objectives: In recent years, new technologies have led to produce a large amount of data and in the field of biology, microarray technology has also dramatically developed. Meanwhile, the Fisher test is used to compare the control group with two or more experimental groups and also to detect the differentially expressed genes. In this study, the false discovery rate was investiga...
متن کاملOracle and Adaptive Compound Decision Rules for False Discovery Rate Control
We develop a compound decision theory framework for multiple-testing problems and derive an oracle rule based on the z values that minimizes the false nondiscovery rate (FNR) subject to a constraint on the false discovery rate (FDR). We show that many commonly used multiple-testing procedures, which are p value–based, are inefficient, and propose an adaptive procedure based on the z values. The...
متن کاملAdaptive p-value weighting with power optimality
Abstract: Weighting the p-values is a well-established strategy that improves the power of multiple testing procedures while dealing with heterogeneous data. However, how to achieve this task in an optimal way is rarely considered in the literature. This paper contributes to fill the gap in the case of group-structured null hypotheses, by introducing a new class of procedures named ADDOW (for A...
متن کاملAn Adaptive Step - down Procedure with Proven Fdr Control under Independence
In this work we study an adaptive step-down procedure for testing m hypotheses. It stems from the repeated use of the false discovery rate controlling the linear step-up procedure (sometimes called BH), and makes use of the critical constants iq/[(m + 1− i(1− q)], i= 1, . . . ,m. Motivated by its success as a model selection procedure, as well as by its asymptotic optimality, we are interested ...
متن کاملQuantitative trait Loci analysis using the false discovery rate.
False discovery rate control has become an essential tool in any study that has a very large multiplicity problem. False discovery rate-controlling procedures have also been found to be very effective in QTL analysis, ensuring reproducible results with few falsely discovered linkages and offering increased power to discover QTL, although their acceptance has been slower than in microarray analy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016